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Unsteady separated flows over
manoeuvring lifting surfaces

By George N. Barakos† and Dimitris Drikakis‡
University of Manchester Institute of Science and Technology,

Department of Mechanical Engineering, PO Box 88,
Manchester M60 1QD, UK

Numerical simulations of dynamic-stall phenomena have been performed using an
implicit unfactored Navier–Stokes solver and various turbulence closures, including
linear and nonlinear low-Re eddy-viscosity models. The accuracy of the models has
been assessed against a range of experimental data for ramping and oscillating aero-
foils at subsonic and transonic conditions. The computations indicate that the non-
linear eddy-viscosity models better predict the shedding of the dynamic-stall vortex
and the unsteady aerodynamic loads.

Keywords: dynamic stall; unsteady aerodynamic flows; pitching aerofoils

1. Introduction

The numerical simulation of unsteady turbulent flows around moving solid bodies is
motivated by the industrial need to analyse and understand flow phenomena associ-
ated with the behaviour of aircraft during manoeuvres. The complex flow phenom-
ena and interactions that occur during super-manoeuvrable, high-incidence flight are
highly nonlinear due to massive separation and interactions between vortices, solid
bodies, turbulent boundary layers, and shock waves. Subsequently, the numerical
simulation of the above phenomena poses many challenges with respect to numerical
methods and turbulence models.
The present paper focuses on the phenomenon of dynamic stall (DS) arising from

unsteady pitching of aerofoils. The DS process has been under investigation for over
three decades and significant progress has been made towards understanding the
physical interactions associated with rapidly manoeuvring lifting surfaces beyond
the static stall angle. Reviews of past theoretical and experimental works can be
found in the papers of Telionis (1977), McCroskey et al . (1982) and McCroskey
(1981), while another experimental study was more recently published by Piziali
(1993). Past computational studies by Mehta & Lavan (1975), Tuncer (1988), Carr
(1988), Visbal (1988) and Ekaterinaris (1995) have analysed the DS phenomenon in
laminar and turbulent flow conditions. All the aforementioned computational studies
have indicated that the accuracy of numerical calculations is strongly affected by the
realism of the turbulence model. Experience with algebraic turbulence models has
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shown that such approximations do not provide satisfactory results in most cases.
Linear low-Re two-equation models seem to offer a reasonable balance between accu-
racy and computational cost, but are not able to capture important effects arising
from normal-stress anisotropy.
At present, nonlinear eddy-viscosity models (NLEVMs) (see, for example, Suga

1995; Craft et al . 1996) emerge as an intermediary level in the hierarchy of closure
models incorporating key features of second-moment closure, but with a computa-
tional effort similar to that for simple isotropic eddy-viscosity two-equation models.
The key idea behind NLEVMs can be found in the work of Pope (1975) and Speziale
(1987), while Rubinstein & Barton (1990) have also developed NLEVMs based on
renormalization group theory. Suga (1995) and Craft et al . (1996) developed two-
and three-equation low-Re NLEVMs, and their studies indicate that these models
are able to give results close to those obtained by second-moment closure. Their
models employ a cubic expansion of the Reynolds-stress tensor in terms of the strain
and vorticity invariants, in contrast to the quadratic expansion proposed by Speziale
(1987).
In addition to turbulence modelling, another challenging task in the simulation of

unsteady aerodynamic flows is the development of accurate and efficient numerical
methods for the unsteady solution of the Navier–Stokes and turbulence-transport
equations. In the past, many researchers have developed Navier–Stokes methods for
unsteady inviscid and viscous flows based on explicit schemes, implicit approximate-
factorization schemes, or hybrid schemes (Visbal 1988; Ekaterinaris 1995). Explicit
schemes require the use of very small time-steps, which lead, subsequently, to long
computing times. Approximate-factorization schemes allow larger time-steps but still
place tight constraints on the maximum Courant–Friedrichs–Lewy (CFL) number,
especially in three-dimensional flows. On the other hand, implicit unfactored schemes
which use Newton sub-iterations allow high CFL numbers and are less sensitive to
the choice of time-step than approximate-factorization schemes.
In the present work, an implicit unfactored solver developed by Barakos & Drikakis

(1998, 1999) has been used for the coupled solution of the Navier–Stokes and tur-
bulence model equations. Validation has been undertaken for various aerodynamic
flows including quasi-steady flows over aerofoils and unsteady flows over oscillating
and ramping aerofoils.

2. Mathematical modelling

(a) Governing equations

The governing equations are the two-dimensional, Reynolds-averaged, compressible
Navier–Stokes equations in conservation-law form. Additional equations are required
to model turbulence transport. It should be noted that the use of averaged equations
to model unsteady flows is only justified if the unsteadiness due to the imposed
boundary conditions is not modulating the inherent unsteadiness due to turbulence.
The governing equations are employed in conservation-law form for an inertial

frame of reference (IFR) (x0, z0, t). However, to numerically simulate flows around
moving bodies, a non-inertial frame of reference (NIFR) needs to be considered
(figure 1). The relative velocity of the NIFR with respect to the IFR is

V = V0(t) + Ω(t)(r(t) − r0(t)). (2.1)
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Figure 1. Schematic of the flow domain.

For a pure rotation of the frame of reference, V0(t) vanishes. Further simplifications
can be obtained by placing the origin of the NIFR at the origin of the IFR (r0(t) = 0).
Finally, for two-dimensional problems and rotation of the NIFR about a single axis,
Ω(t) becomes a scalar, ωf .
The prescribed pitching motion can, subsequently, be used to find the parameter

ωf = dα/dt. For all test cases presented in this work the aerofoil is subjected to
a harmonic oscillation about its quarter-chord axis (figure 1), which is described in
terms of the angle-of-incidence variation, α(t), using

α(t) = α0 + α1 cos(ωft), (2.2)

where α0 and α1 are the mean angle and amplitude of the harmonic oscillation,
respectively. In the case of oscillating aerofoils, the unsteady motion is usually charac-
terized by the similarity parameter kf , known as reduced frequency of the oscillation.
This is defined by

kf = ωfc/2U∞, (2.3)

where c is the characteristic length of the problem (aerofoil chord), ωf is the frequency
of the oscillation, and U∞ is the freestream velocity.

(b) Turbulence modelling

The stress tensor tij = t̄ij + τR
ij contains molecular and Reynolds-stress contri-

butions. Linear eddy-viscosity models of the k–ε type require the solution of two
transport equations, one for the kinetic energy of turbulence, k, and one for the
turbulent dissipation rate, ε (or its isotropic component ε̃). These models make use
of the Boussinesq approximation to model the Reynolds stress tensor. On the other
hand, NLEVMs use an expansion of the Reynolds-stress components in terms of the
mean strain-rate and rotation tensors:

Sij = 1
2(Ui,j + Uj,i), Ωij = 1

2(Ui,j − Uj,i). (2.4)
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In view of the marginal improvements returned, generally, by quadratic expansions,
a cubic expansion has been proposed by Suga (1995) and employed in this work. For
the k–ε NLEVM of Suga (1995), the transport equations for k and ε̃ are similar to
those of the standard k–ε model of Launder & Sharma (1974). The production term
Pk suggested by Suga (1995) is:

Pk = ρcµfµε̃S̃Ω̃. (2.5)

Also the coefficient cµ in the calculation of the eddy viscosity (µT = cµρfµ(k2/ε̃))
is not a constant any more, but is given by a function that involves the strain and
vorticity invariants. Such a functional form of cµ has been found to be beneficial in
flows far from equilibrium, and has also been employed in the work of Liou & Shih
(1996) for shock–boundary layer interaction.
Apart from the cubic k–ε NLEVM of Suga (1995) and Craft et al . (1996), the

linear k–ε models of Launder & Sharma (1974) and Fan et al . (1993) have also been
employed in the present study. Moreover, results have also been obtained using the
one-equation model of Spalart & Allmaras (1992).

(c) Numerical scheme

The present numerical scheme solves the conservation equations of mass, momen-
tum and energy along with the turbulence-transport equations using a finite-volume
approach and body-conforming curvilinear coordinates (ξ, ζ, τ).
The discretization of the inviscid fluxes is obtained by a characteristic-based

scheme (approximate Riemann solver). Since this scheme has been extensively used
in the past for studying steady compressible flows (Eberle et al . 1992; Drikakis &
Durst 1994a, b), it will not be presented here in detail. A third-order upwind scheme
is also used in conjunction with the Riemann solver in order to increase, locally, the
accuracy of the calculation of the inviscid fluxes at the cell faces of the computational
volumes (Drikakis & Durst 1994a, b). Limiters based on the square of pressure deriva-
tives have been used for detecting shocks and contact discontinuities. The viscous
terms are discretized by central differences.
The time accuracy can be obtained by using implicit or explicit schemes, and

the efficiency of the above is strongly related to the time-scales imposed by the
prescribed motion of the solid boundaries. The present approach solves all equations
in a strongly coupled manner using an implicit unfactored relaxation scheme. This
results in a compact numerical implementation that requires a moderate number
of Newton iterations at each time-step. However, the implementation is complicated
and also requires a realistic initial guess (e.g. the steady-state solution around a fixed
boundary) before the time marching is initiated (Barakos & Drikakis 1999).
For the implicit solution of the governing equations, a second-order approximation

of the time derivative has been used. For every cell of the computational domain,
a diagonally dominant system of six equations can be obtained and subsequently
inverted by a matrix-inversion technique. This system is solved here by a point-by-
point Gauss–Seidel scheme. Moreover, to obtain high values of the CFL number,
preconditioning is also performed at each Gauss–Seidel sub-iteration (Barakos &
Drikakis 1998).
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Figure 2. Unsteady airloads for the AGARD CT1 case.

3. Results and discussion

The model’s performance is examined here for the NACA-0015 and NACA-0012
aerofoils. The selection of the above geometries was based on the availability of
experimental data or previous simulation results from the literature.
Body-fitted, structured C-type computational grids have been used in all calcu-

lations. The grids have been generated using an elliptic grid generator. The grid
lines are clustered near the body surface in the normal direction and are stretched
towards the leading and trailing edge of the profile. Extra care has been taken to
place enough grid points very close to the solid boundary. For all cases, the first node
above the solid boundary was at a distance of 10−6c, giving y+ < 1. The far-field
boundary was placed at 6c in the upstream direction and at 10c in the wake direc-
tion. The grid contains 200 cells on the profile surface, 50 cells on each side of the
artificial boundary in the wake, and 90 cells in the vertical direction. Thus, the total
number of grid cells is 300 × 90. A coarser mesh (180 × 80) has been employed for
the one-equation Spalart–Allmaras model.
The orientation of the NIFR with respect to the IFR is changing in time, and the

nodal coordinates are, therefore, recomputed at each time-step. Since the grid is not
deformed, the Jacobians of the cells, as well as the distance between the cells and
the solid boundary, are held constant.
The boundary conditions are updated explicitly at each time-step. For all cases

considered here the incoming stream is subsonic; thus, density and velocity compo-
nents are held constant and the pressure is extrapolated from inside the domain.
The level of the freestream turbulence has been kept constant at 0.5% of the kinetic
energy of the incoming stream. A length-scale of 0.01c has been used to estimate the
freestream value of the turbulence energy dissipation rate. At the outflow bound-
ary, a simple extrapolation has been used for all variables. As initial conditions, the
steady-state solution of the flow around the aerofoil has been used.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3284 G. N. Barakos and D. Drikakis

(a) Harmonic oscillation of the NACA-0012–AGARD CT-1 case

This is an unsteady transonic flow case with Mach and Reynolds numbers of 0.6
and 4.8 × 106, respectively. The mean incidence angle is 2.8◦ and the amplitude
of oscillation is 2.4◦. The aerofoil is pitched with respect to the quarter-chord axis
(x/c = 0.25). The case is identified as CT1 in the Advisory Group for Aerospace
Research and Development (AGARD) compendium of unsteady aerodynamic mea-
surements (AGARD 1982). The linear EVM model by Fan et al . (1993) (hereafter
referred to as FLB), as well as the algebraic Baldwin–Lomax model and the NLEVM,
have been employed for this case. The lift and moment loops are shown in figure 2.
Due to the high value of the freestream Mach number, a shock appears in the leading-
edge region of the profile. The relative strength of the shock changes as the aerofoil
oscillates. Due to the small incidence angles the flow is essentially attached, and, thus,
sensitivity to turbulence modelling is expected to be modest. However, the moment
loop shows significant differences between numerical predictions and experimental
data.

(b) Deep-stall oscillation of the NACA-0015

Experiments for the unsteady flow over an oscillating NACA-0015 aerofoil have
been performed by Piziali (1993) and these are used herein. The experimental results
include hysteresis loops of the lift, drag and moment coefficients. The leading-edge
transition was fixed using trips attached to the aerofoil surface. The data correspond
to deep-stall conditions at which the static stall angle is exceeded. Deep-stall flows
are encountered in helicopter rotors and such cases are especially challenging, both
for the flow solver and turbulence models.
In order to carry out the unsteady computations, the quasi-steady turbulent flow

over the aerofoil at mean angle was computed first and this solution was given as the
initial condition to initiate the unsteady flow computation. The freestream conditions
correspond to a Reynolds number of 1.95 × 106 and a Mach number of 0.29. The
amplitude of the oscillation is 4.2◦, while the mean incidence is 17◦. For all cases
the reduced frequency of the oscillation is kf = 0.1. Numerical results for the above
case have also been presented by Ekaterinaris (1995) using an implicit factorization
method. The Spalart–Allmaras (SA), the Launder–Sharma (LS) and the NLEVM k–ε
model (NL) were employed in the present computations. Quasi-steady computations
indicated that separation occurs at 13◦ for all models. Therefore, only unsteady
solutions should be carried out for higher incidence angles.
Results for unsteady airload hysteresis loops are shown in figure 3. The calculations

performed with the NLEVM are in better agreement with the experimental data.
For the same regime, the linear LS model gives poor results due, mainly, to the
excessive production of turbulence it predicts. The NLEVM, and to some extent the
SA model, predicts lower levels of turbulence and, thus, the DS vortex separates
more readily. The results for the Cl coefficient (figure 3) show that the predictions of
the two models are comparable for some parts of the unsteady cycle, except at high
angles of incidence, where the NLEVM predictions are closer to the experimental
data. Such differences are more pronounced in the Cm loop. Finally, it is observed
that the trends of the moment coefficient are better predicted by the two-equation
models, but the differences between computations and experiment remain large.
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Figure 3. Unsteady airloads for the oscillating NACA-0015 ((a)–(c)) and
oscillating NACA-0012 ((d)–(f)) aerofoils.
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(c) Deep-stall oscillation of the NACA-0012

Computations at deep-stall conditions have also been performed for the NACA-
0012 profile. The results are compared with the experimental data of McCroskey
(1981). The freestream Reynolds-number is 106, while the Mach number is 0.2. The
oscillation amplitude is 10◦ around a mean incidence angle of 15◦ and the reduced
frequency is kf = 0.25. The LS and NLEVM models were employed for this flow case.
As can be seen from the predicted unsteady airloads (figure 3d–f), the linear model

fails to predict essential features of the loop curves. In particular, the ‘double loop’ of
the Cm (figure 3e) is suppressed. This is apparently due to the excessive production
of turbulence, which inhibits flow separation and results in poor predictions of the
lift and moment loops. A better prediction has been obtained by the NLEVM.

(d) Ramping NACA-0012

The flow simulation around a ramping NACA-0012 aerofoil was also carried out.
Ramping is a common case for investigating the unsteady aerodynamics of a lifting
surface, and, therefore, several experimental investigations have been performed in
the past (AGARD 1982; Wilby 1996; Mabey et al . 1988). In the present work, the
Mach and Reynolds numbers are 0.56 and 4.5×106, respectively, while a dimension-
less pitch rate of 0.85 deg s−1, non-dimensionalized by U∞/c, is used. The starting
incidence is 0◦ and varies up to the maximum of 15◦. This case was selected since it
combines relatively high Mach number and stall occurring at high incidence angles.
Figure 4 shows the Cl coefficient predicted by linear and nonlinear EVM in compar-
ison with experimental results reported in AGARD (1982). Comparisons between
simulation results and experimental data at three time instants are also shown in
the same figure. At low incidence angles the flow is attached and both linear and
nonlinear EVMs satisfactorily predict the experimental values. At higher incidence
angle, and as a shock is formed close to the leading edge of the aerofoil, there is
some improvement using the NLEVM. However, there is still a significant discrep-
ancy between the predictions and experimental data. After stall and as the aerofoil
reaches the maximum incidence, the predictions of the models are similar with large
differences between their predictions and experimental data, especially close to the
leading edge of the profile (see figure 4d).

(e) Discussion

A summary of the results obtained so far, as well as an overview of the phenomena
predicted by the calculations, is given below. Figure 5 presents the time history of
the aerodynamic loads using the NLEVM. Figure 5a suggests that for the CT1 case
(moderate Mach number, small mean and oscillation amplitude angles) there is a
smooth variation of the Cp coefficient during the unsteady oscillation, resulting in a
simple hysteresis loop. Moving to higher incidence angles (NACA-0015 and NACA-
0012 cases) the phenomenon of dynamic stall takes place. Figure 5b presents the
surface pressure history for the NACA-0012 aerofoil oscillating at deep-stall subsonic
conditions. It is evident that there is an abrupt change of the Cp coefficient as the
maximum incidence is reached. The shedding of the dynamic stall vortex (DSV) is
evident in figure 5b, indicated by a second peak in the Cp curve. The DSV travels
over the profile and is then shed in the wake (three last Cp curves in figure 5b). The
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Figure 4. Ramping NACA-0012 aerofoil. (a) Lift curve. Comparison between numerical and
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Figure 5. Surface pressure history (a) for the AGARD CT-1 case, (b) for the oscillating
NACA-0012 at deep-stall conditions, (c) for the oscillating NACA-0012 at low frequency, and
(d) for the ramping NACA-0012. All time-steps correspond to results before and after the stall
angle.

combination of maximum incidence and pitch rate can lead to either a single loop
of the Cm coefficient (NACA-0015 case) or a double-loop (NACA-0012) case. This
phenomenon is totally different from the static stall of an aerofoil, where separation

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Unsteady separated flows 3289

initially occurs at the trailing edge and the stall angle is smaller. Figure 5c shows
the history of the Cp coefficient for an oscillating NACA-0012 at low frequency. The
conditions are close to those of the deep-stall oscillating NACA-0012 aerofoil, but
the reduced frequency of oscillation is much smaller (kf = 0.05). As shown, the
DSV is not present and vortex shedding occurs directly at the trailing edge as the
stall angle is approached. This is essentially a quasi-steady calculation—pitching at
very low rate—and the stall angle is the same with the static one. For a higher
Mach number—the case of ramping NACA-0012—the separation of the boundary
layer appears to be associated both with the moving boundary and with the shock–
boundary-layer interaction. Figure 5d shows the time history of the Cp for the case
of the ramping NACA-0012. The presence of a shock is evident in the middle of
the plot, at dimensionless time-step equal to about 50, while vortex shedding occurs
earlier. The path of the vortex around the profile is not as clear as for the subsonic
case, since separation starts downstream of the shock.
The CPU time for a single time-step, as well as the number of time-steps needed

for every period of oscillation, depend strongly on the flow case and turbulence model
employed. For all unsteady cases examined in this paper, calculations were performed
for three full oscillation loops to assure that periodic loads have been obtained. The
number of time-steps per oscillation cycle varied from 48 for the CT1 case to 145
for the deep-stall oscillation of the NACA-0012. The CPU time per step doubles
when a two-equation model is employed instead of an algebraic one. The NLEVM
was found to be more difficult to converge and required a further reduction of the
CFL number. For the most difficult case considered here (oscillating NACA-0012 at
deep-stall conditions), three days of CPU time were required to obtain results using
the NLEVM model. The computations were performed on a single processor of the
SGI ORIGIN-2000.

4. Conclusions

An implicit unfactored solver for the coupled solution of the Navier–Stokes and
turbulence-transport equations was employed to calculate unsteady aerodynamic
flows with moving boundaries. The results demonstrated that the numerical pre-
dictions depend strongly on the turbulence closure employed. The NLEVM model
was found to predict better results than the linear EVM and captured many features
that appeared in the experimental data.
Using the present numerical scheme in conjunction with the employed turbulence

models we were able to reproduce qualitatively well-known phenomena associated
with the unsteady flow, such as the DSV, DS, the leading edge and trailing edge
separation, the hysteresis of the airloads, and the unsteady shock–boundary-layer
interaction. Further progress is, however, necessary in terms of the accuracy of the
turbulence models in order to obtain better results compared with the experimental
data. Moreover, further improvements of the efficiency of CFD solvers is required
when these are used in conjunction with complex turbulence closures.
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